New Eudesmenes from *Erigeron annus*

Xin LI, Qiu Hong WU, Kun GAO*

Chemistry and Chemical Engineering Department, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Chemical investigation of *Erigeron annus* afforded two new eudesmenes, which were identified as 1β , 5α -dihydroxyeudesma-4(15)-en (1) and 1β , 7α -dihydroxyeudesma-4(15)-en (2). Their structures were established by spectroscopic methods including 2D NMR experiments.

Keywords: Erigeron annus, compositea, eudesmene, sesquiterpene.

Plants of the genus *Erigeron* have applied in folk medicine for a long time. *E. annus* was also a useful traditional medicine for the treatment of indigestion, enteritis, epidemic hepatitis and hematuria¹. In the research for its biologically active constituents, we found two new sesquiterpenes from its EtOAC extract.

Compound 1 was isolated as colorless oil, $[\alpha]_{D}^{17}$ +51 (*c* 0.4, CHCl₃). The IR spectrum showed absorption bands for hydroxyl group (3374 cm⁻¹) and double bond (1645 cm⁻¹). The EIMS showed $[M]^+$ peak at m/z 238, corresponding to the molecular formula $C_{15}H_{26}O_2$. In the ¹H-NMR spectrum, a signal at δ 4.06 (dd, J=11.7 Hz, 5.1 Hz) attributable to an axial proton (geminal to a hydroxyl group) was observed. Two double signals at δ 4.85 and δ 4.75 (J=1.5 Hz) confirmed the presence of an exomethylene group². Together with three signals for methyl groups δ 0.76 (s, 3H), δ 0.91 (d, 3H, J=6.6 Hz) and δ 0.87 (d, 3H, J=6.6 Hz), compound **1** can be deduced as an eudesmane sesquiterpene derivative. In the HMBC spectrum, the correlations of the olefinic protons with C-3 (δ 29.91) and C-5 (δ 76.16), the angular methyl protons with C-5, C-10 (δ 42.23), C-1 (δ 73.12) and C-9 (δ 29.76), and the carbinol proton with C-3 showed that the exocyclic double bond laid at 4(15) and the hydroxyl groups at C-1 and C-5. The signal of H-14 at δ 0.76 was characteristic of *trans*-fused eudesmanes³. If H-7 was presumed to be α -orientation, the configurations of other substituted groups should be 1 β , 5 α -dihydroxy and 10 β -methyl by the NOESY cross-peaks observed between H-1 α and H-9 α , Me-14 protons and H-8 β , H-7 α and H-1 α ,3 α . The upfield shift in the ¹³C-NMR absorption of the angular methyl carbon to δ 12.70 further confirmed that the hydroxyl group at C-1 was equatorial and β -configuration⁴. Therefore, the structure of **1** was identified as 1 β , 5 α -dihydroxyeudesma-4(15)-en. The ¹H and ¹³C NMR signals were completely assigned on

^{*} E-mail: miaozm@lzu.edu.cn

Xin LI et al.

the basis of ¹H-¹H COSY and HMQC spectra (**Table 1**).

Compound **2**, $[\alpha]_{D}^{17}$ +30 (*c* 0.1, CHCl₃), was colorless oil and its molecular formula also was C₁₅H₂₆O₂, deduced from its EIMS spectrum ([M]⁺ peak at *m*/*z* 238). Two fragment peaks at 220 [M-H₂O]⁺ and 202 [M-2H₂O]⁺ revealed the presence of two hydroxyl groups, corresponding to the absorption band at 3374 cm⁻¹ in the IR spectrum. Its NMR data were similar to those of **1** except for the obvious downfield shift of C-8 and C-11 (**Table 1**), indicating that a tertiary hydroxyl group was at C-7. This was further confirmed by the cross-peaks observed between H-12, 13 (δ 0.95, d, 6H, J=6.3 Hz) and C-11 (δ 41.70) and C-7 (δ 73.35) in the HMBC spectrum. Thus compound **2** was deduced to be 1 β , 7 α -dihydroxyeudesma-4(15)-en.

Figure 1 Structures of compounds 1, 2

Table 1 1 H-NMR (300 MHz) and 13 C-NMR (75 MHz) data of 1,2 (CDCl₃, δ ppm)

С	1 δ _C	2 δ _C	Н	1 δ _H	2 ծ _н
1	73.12	78.97	1α	4.06 (dd, <i>J</i> =11.7, 5.1)	3.50 (dd, <i>J</i> =11.7, 5.1)
2	30.54	31.41	2β	1.54 (m)	
			2α	1.81 (m)	
3	29.91	34.25	3β	1.25 (m)	
			3α	2.12 (m)	
4	150.59	148.91			
5	76.16	39.02	5α		
6	34.28	32.02	6β	2.17 (m)	
			6α	1.64 (m)	
7	38.25	73.35	7α	2.71 (m)	
8	23.65	31.81	8β	1.56 (m)	
			8α	1.85 (m)	
9	29.76	29.00	9β	1.60 (m)	
			9α	1.83(m)	
10	42.23	38.59			
11	32.78	41.70	11	1.53 (m)	
12	20.00	16.80	12	0.87 (d, <i>J</i> =6.6)	
13	19.99	16.00	13	0.91 (d, <i>J</i> =6.6)	0.95 (d, <i>J</i> =6.3)
14	12.70	9.08	14	0.76 (s)	0.95 (d, <i>J</i> =6.3)
15	108.66	106.56	15a	4.85 (d, <i>J</i> =1.5)	0.66 (s)
			15b	4.75 (d, <i>J</i> =1.5)	4.47 (d, <i>J</i> =1.5)
					4.76 (d, <i>J</i> =1.5)

Acknowledgment

This work was supported by the NNSFC (No. 20372029 and No. 20021001 - QT Program).

References

- 1. Jiangsu College of New Medicine, "A Dictionary of the Traditional Chinese Medicines", Preople Hygiene Publisher, Beijing, 1977, p.4.
 M. Suzuki, M. Segawa, *et al.*, *Phytochemistry*, 1985, 24, 2011.
 K. P. Verma, T. C. Jain, S. C. Battacharyya, *Tetrahedron*, 1962, 18, 979.
 D. Adinarayana, K. V. Syamasundar, *Phytochemistry*, 1982, 21(5), 1083.

Received 4 December, 2003